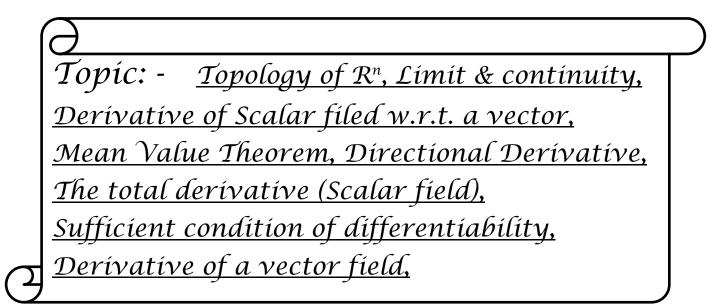
# FUNCTIONS OF SEVERAL VARIABLES (M.Sc., Paper-VI)

## (Real Analysis-II)



Sudip Kumar

Assistant Professor, Department of Mathematics Sachchidanand Sinha College Aurangabad, Bihar

| 1 | Functions of Two Variables                                                                   |
|---|----------------------------------------------------------------------------------------------|
|   | Functions from Rh to Rh :>                                                                   |
|   | A linear transformations                                                                     |
|   | $T: Y = \mathbb{R}^{n}(\mathbb{R}) \longrightarrow \mathbb{M} = \mathbb{R}^{m}(\mathbb{R}).$ |
|   | from a vector space V into another                                                           |
|   | vector space W. (Where Vand W are                                                            |
|   | finite - dimensional vector space)                                                           |
| - | $\rightarrow$ If $n=m=1$ i.e; $f:\mathbb{R}\longrightarrow\mathbb{R}$ is called a            |
|   | real-valued function of a real variable.                                                     |
|   | $\rightarrow$ When $n=1$ , and $m>1$ i,e; $f:\mathbb{R}\longrightarrow\mathbb{R}^m$ is       |
|   | a vector valued function of a real                                                           |
|   | variable.                                                                                    |
| - | > When $n>1$ and $m>1$ .                                                                     |
|   | is If $m=1$ , the function is called a                                                       |
|   | real-valued function of a vector variable                                                    |
|   | or a scalar field. (i.e., $f: \mathbb{R}^h \longrightarrow \mathbb{R}$ )                     |
|   | is If m>1 it is called a vector-valued                                                       |
|   | function of a vector variable or simply a                                                    |
|   | vector field. (i.e; $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ ).                        |

Definition: -> If x, y ERh then inner Product is defined as If ac = (24, ---, x4) & y = (21, --- ym) EIRM  $\langle z, y \rangle = x \cdot y = \sum x_k y_k = x_k y_l + \dots + x_n y_n.$ And corresponding norm is denoted by 1/211 and defined as ## = (23) = (23)  $||\mathbf{x}|| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = (\mathbf{x} \cdot \mathbf{x})^{\frac{1}{2}} \sqrt{\mathbf{x}_{1}^{2} + \dots + \mathbf{x}_{n}^{2}}$ Open ball and open set: -> Let a = (a1, ..., an) be a given point in Rh and 3200 be a given positive great number. The set of all points a x = (x4,....,xn) ER S.t. 1x-a < 22 is called an open word n- ball of radius or and center so a. Eres We denote this set by B(a) or B(a, r). Example: - i) In R this is simply an open interval (a-sr, a+sr). ie; B(a;n) = (a-n, a+n).

(i) In  $\mathbb{R}^{2}$  it is a <u>circular</u> <u>disk</u> ie;  $B(a, \pi) = \{ 2 = (24, 3i) \in \mathbb{R}^{2} : ||x - a|| < \pi \}$ Where  $a = (24, a_{2}) \in \mathbb{R}^{2}$ . Then  $||x - a|| = ||(24 - 24, 22 - a_{2})||$  $= \sqrt{(24 - 24)^{2} + (22 - a_{2})^{2}}$ 

i,e;  $B(q, \pi) = \{x \in \mathbb{R}^2 : (x_1 - \alpha_1)^2 + ex(x_2 - \alpha_2)^2 < \pi\}$ 

(11) In R<sup>3</sup> it is a spherical solid with content center a = (a1, a2, a3) ER<sup>3</sup> of radius 270.

Definition (interior Point):  $\rightarrow$  Let S be a Subset of  $\mathbb{R}^{h}$ , and assume that  $a \in S$ . is Then a is called an interior point of S if there is an <u>open n-ball</u> with center a, such that  $B(a, p) \subseteq S$ .

> Remark: DThe set of all interior points of S is called interior of S, and denoted by int S. (2) An open set containing a point 'a'

is sometimes called neighbourhood of 'a'

4. Definition (OPEN SET): - A set S in Rh is called open if all its points are interior points. SSIR<sup>n</sup> is open if and only if S=ints. Definition (Exterior and Boundary) :-> A point at Rh is said to be exterior point of a set s in Rh if I an open boot n-ball B(a) containing no points of S. The set of all points in R<sup>h</sup> exterior to s is called the exterior of s and denoted by exts. A point which is neither exterior to s nor an interior point of s is called a boundary point of S. The set of all points of boundary points of s is called the boundary of s and is denoted by as.

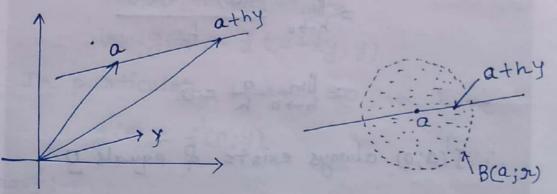
Functions of two variables Limits and continuity: > Let s is a subset of Rh. consider. a function.  $f:S\subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$ , and if  $a = (a_1, \dots, a_n) \in \mathbb{R}^n$  and  $b = (b_1, \dots, b_m) \in \mathbb{R}^m$  $\lim_{x \to a} f(x) = b \quad (\text{or } f(x) \to b \quad ag \quad x \to a) = 0$ Then to mean that  $\| \lim_{x \to 0} \| \| f(x) - b \| = 0.$  (-2) 11x-all-(9t is not required that I be defined at the point a) If we write h = x - a. Equation (2) becomes  $\|m\|f(x+h) - b\| = 0$ ‼h||→0 -> A function f is said to be continuous at 'a' if for is defined at a and if  $\lim_{x \to 0} f(x) = f(b)$ We say f is continuous on a set S if f is continuous at each point of S. d dies such that the limit f(x) but

Scanned with CamScanner

5.

## Functions of two variables

Derivative of a scalar field worto a vector. Let f:ssR^ > TR bea scalar field. Let a = (a, ---, an) be an interior point of S. Suppose we move from 'a' towards another point aty along the line segment joining a and aty. Each point of a this segment is of the form athy, where h is a real number. The distance from a to athy is 11hy 11 = 1h/11 y 11. : 'a' is a interior point of S, there is an n-ball B(a; n) laying intistely in S. If h is chosen so that ||hy||= |h|||y|| < 92, the sense segment from anto a to a thy will lie in S.



We keep h=(h,...hn) = 0 but show small enough to guarantee that a thy ES. Definition of the derivative of a scalar field w.r. to a vector : ->

Given a scalar field  $f:S\subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$ . Let a be an interior point of S and Y be an arbitrary point in  $\mathbb{R}^n$ . The derivative of f at a  $w \cdot v \cdot to$  Yis denoted by the symbol f'(a; Y) and is defined by

 $f'(a,y) = \lim_{h \to 0} \frac{f(a+hy) - f(a)}{h}$  (if exists)

$$\frac{\text{Example}(1)}{\text{Then}} \quad \text{If } \begin{array}{l} y=0, \\ \text{Then} \\ f'(a, o) = \lim_{h \to 0} \frac{f(a+hy) - f(a)}{h} \\ \\ = \lim_{h \to 0} \frac{f(a) - f(a)}{h} \\ \\ = \lim_{h \to 0} \frac{0}{h} = 0 \\ \\ \therefore f'(a; o) \text{ always exists } f \text{ equals } 0. \end{array}$$

$$\frac{\text{Example}(3): - \text{Derivative of a linear transformation} \\ \text{If } f: S \subseteq \mathbb{R}^n \longrightarrow \mathbb{R} \text{ is linear, then} \end{array}$$

f(a+hy) = f(a) + h f(y) Then

$$f(a,y) = \lim_{h \to 0} \frac{f(a+hy) - f(a)}{h}$$

$$= \lim_{h \to 0} \frac{f(a) + hf(y) - f(a)}{h}$$

$$= \lim_{h \to 0} \frac{hf(y)}{h}$$

$$= \lim_{n \to 0} f(y) = f(y)$$

: f'(a,y) = f(y) for every all f every y in IRh.

THEOREM: + Let 
$$g(t) = f(a+ty)$$
. If one  
of the following derivatives  $g'(t)$  or  
 $f'(a+ty; y)$  exists then the other exists  
and they are equal.  
is:  $g'(t) = f'(a+ty; y)$   
In particular, then  $t=0$ , we have  
 $g'(0) = f'(a; y)$   
Proof: -  
 $\frac{f'(a+ty+hy) - f(a+th)}{h} = \frac{f(a+ty+hy) - f(a+th)}{h}$ 

h

$$\Rightarrow \lim_{h \to 0} \frac{g(t+h) - g(t)}{h} = \lim_{h \to 0} \frac{f'(a+ty+hy) - f(a+th)}{h}$$
$$\Rightarrow \frac{g'(t)}{h} = \frac{f'(a+ty;h)}{h}$$

putting t=0 in (2), we have  

$$g'(0) = f'(a;y)$$
  
 $proved$ .  
Example (3):  $\rightarrow$  (compute  $f'(a;y)$  if  $f(x) = ||x||, \forall x \in \mathbb{R}^{h}$ .  
Solution:  $\rightarrow$   
Let  $g(t) = f(a+ty) = (a+ty) \cdot (a+ty)$   
 $= a \cdot a + 2ta \cdot y + t^{2}y \cdot y$   
 $\rightarrow g'(t) = 2a \cdot y + 2t y \cdot y$   
 $\Rightarrow g'(0) = 2a \cdot y$   
 $A_{\underline{x}}$ .  
THEOREM:  $\rightarrow$  (MEAN - VALUE THEOREM FOR DERIVATIVES  
OF SCALAR FIELDS)  
Assume the derivative  $f'(a+ty;y)$  exists for

some steal  $\theta$  in the open interval  $0 < \theta < 1$ . We have

f(a+y) - f(a) = f'(z;y) Where  $z = a+\theta y$ . <u>Proof</u>:  $\rightarrow$  Let g(t) = f(a+ty).

Applying the Mean value theorem to g on the interval [0,1] we have

 $\therefore g(1) - g(0) = f(a+y) - f(a)$ 

and  $g'(\theta) = f'(a + \theta y; y)$ .

f(a+y) - f(a) = f'(z; y) Hhere z = a + by

Scanned with CamScanner

#### Functions of two variable.

5.

Directional derivative and Partial derivatives: When y is a <u>unit vector</u>, that is  $\|y\| = 1$ , the distance between a = a and a + hyis |h|, then  $f'(a;y) = \lim_{h \to 0} \frac{f(a+hy) - f(a)}{h} = (\nabla f)(a) \cdot hy$ 

Then f'(a; y) is called the directional derivative of f at a, in the direction of y.

Remark: -> 
$$\frac{f(a+hy)-f(a)}{h}$$
 represents  
the average rate of change of  
per unit distance along the line segment  
joining a to a thy.  
(The derivative f'(a;y) is called directional  
derivative)

<u>Remark</u>:  $\rightarrow$  If  $y = e_k$  (the kth unit coordinate vector) the directional derivative  $f'(a;e_k)$  is called the partial derivative  $w.r.to. e_k.and$  is also denoted by the symbol  $D_kf(a)$ . Thus  $D_kf(a) = f'(a;e_k)$ 

Remark: NO If 
$$f: S \subseteq \mathbb{R}^{2} \longrightarrow \mathbb{R}$$
 be a set scalar  
fied.  
Then  $\|f\| = \sqrt{\frac{1}{2} + \frac{1}{2}} = 1$ . Let  $a = (a_{1}, a_{2}) \in 5$ ?  
Then  $\|f\| = \sqrt{\frac{1}{2} + \frac{1}{2}} = 1$ . Let  $a = (a_{1}, a_{2}) \in 5$ ?  
Then  $\|f\| = \sqrt{\frac{1}{2} + \frac{1}{2}} = 1$ . Let  $a = (a_{1}, a_{2}) \in 5$ ?  
Then  $f^{\dagger}(a; y) = \lim_{h \to 0} \frac{f(a + hy) - f(a)}{h}$   
 $= \lim_{h \to 0} \frac{f(a + hy), a_{2} + hy_{2}) - f(a_{1}, a_{2})}{h}$   
 $= \lim_{h \to 0} \frac{f(a + hy), a_{2} + hy_{2}) - f(a_{1}, a_{2})}{h}$   
 $= \lim_{a} \lim_{h \to 0} \frac{f(a + hy), a_{2} + hy_{2}) - f(a_{1}, a_{2})}{h}$   
(2) The unit co-ordinate vectors are  $e_{1} = (1, 0)$   
and  $e_{2} = (0, 1)$ , where  $\|e_{1}\| = \|e_{2}\| = 1$ .  
 $\therefore D_{1} f(a) = f^{\dagger}(a; e_{1}) = \lim_{h \to 0} \frac{f(a_{1} + h, a_{2}) - f(a_{1}, a_{2})}{h}$   
and  $\frac{1}{2} = (a_{1} + a_{2}) = \lim_{h \to 0} \frac{f(a_{1} + h, a_{2}) - f(a_{1}, a_{2})}{h}$ 

where Dif(a) and D<sub>2</sub>f(a) are called the partial derivatives of f at a.

The Gradient:  $\rightarrow$  If  $f(x,r;z) \cdot is$  a real-valued function of three variables, its gradient, which is denoted by  $\nabla f$  or grad f, is <u>defined</u> by  $\nabla f = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j} + \frac{\partial f}{\partial z}\hat{k}$ For f(x,y) the gradient is

$$\nabla f = \frac{\partial f}{\partial x} \hat{i} + \frac{\partial f}{\partial y} \hat{j}$$

Remark :  $\rightarrow$  If y is a unit vector ( $||\forall|| = 1$ ) then y <u>specifies</u> a direction in a plane or space, and we call  $\nabla f(X) \cdot y$  the <u>directional</u> <u>derivative</u> of f at the point x in the direction of y.

Example: A scalar field f is denoted by defined on  $\mathbb{R}^{h}$  by the equation  $f(x) = a \cdot x$  where ais a constant vector. compute f'(x;y) for arbitrary  $x \notin y$ .

$$\frac{\text{solution}:}{f'(x;y)} = \lim_{h \to 0} \frac{f(x+hy) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{a \cdot (x+hy) - a \cdot x}{h}$$
$$= \lim_{h \to 0} \frac{a \cdot x + h(a \cdot y) - a \cdot x}{h}$$

Scanned with CamScanner

$$= \lim_{h \to 0} \frac{h(a, y)}{h}$$

$$= \lim_{h \to 0} (a, y) = a \cdot y$$

$$= \lim_{h \to 0} (a, y) = a \cdot y$$

$$= \lim_{h \to 0} (a, y) = a \cdot y$$

$$= \lim_{h \to 0} (a, y) = a \cdot y$$

$$= \lim_{h \to 0} (a, y) = \frac{1}{h}$$

$$= \lim_{h \to 0} (a, y) = \lim_{h \to 0} (a, y) = \frac{1}{h} = \lim_{h \to 0} (a, y) = \lim_{h \to 0$$

9

Directional derivatives and continuity :->

The next example <u>describes</u> a scalar field which has a <u>directional</u> derivative in every <u>direction</u> at 0 but which is not <u>continuous</u> at 0.

Example: > Let  $f: s \subseteq \mathbb{R}^2 \to \mathbb{R}$  defined by  $f(x,y) = \frac{xy^2}{x^2+y^4}$  if  $x \neq 0$ , f(0,y) = 0.

Let a = (0,0) and let  $y = (y, y_2)$  be any unit vector in  $\mathbb{R}^2$ . If  $y \neq 0$  and  $h \neq 0$ , we have

 $f'(a;y) = \lim_{h \to 0} \frac{f(a+hy) - f(a)}{h}$ 

$$= \lim_{h \to 0} \frac{f(hy) - f(a)}{h}$$

$$= \lim_{h \to 0} \frac{f(hy)}{h} = \lim_{h \to 0} \frac{f(hy)}{h}$$

$$\lim_{h \to 0} \frac{h y_1 \cdot y_2}{h^2 (y_1^2 + h^2 y_1^2)}$$

$$= \lim_{h \to 0} \frac{y_1 \cdot y_2^2}{y_1^2 + h^2 y_2^4} = \frac{y_1 \cdot y_2^2}{y_1^2} = \frac{y_2^2}{y_1}$$

$$f'(0; Y) = \frac{Y_2^2}{Y_1}$$
.

If 
$$y = (0, y_2)$$
,  $h \neq 0$ , then

$$f'(0,Y) = \lim_{h \to 0} \frac{f(0+hY) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{f(0,Y) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{f(0,Y) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{f(0,Y)}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

$$\therefore f'(0,Y) = 0$$
Therefore  $f'(0,Y)$  exists for all directions  $Y$ .
Also,  $f(X) \to 0$  as  $x \to 0$  along any straight line. through the origin.
If  $f(x,Y) = 0$  as  $x \to 0$  along any straight line.
If  $f(x,Y) = 0$  as  $y \to 0$ .
$$\prod_{h \to 0} \frac{1}{h} = \frac{1}{h} = \frac{1}{h} = \frac{1}{h}$$

$$= \lim_{h \to 0} \frac{f(x,Y)}{h} = \lim_{h \to 0} \frac{1}{h} = \frac{1}{h} = \frac{1}{h}$$
Since such points exists arbitrary discast close to the origin  $f$  since  $f(0) = 0$ .
If is an hot continuous at (x).
Therefore the origin  $f$  since  $f(0) = 0$ .
$$\therefore f$$
 is an hot continuous at (x).
Therefore the origin  $f$  since  $f(0) = 0$ .

The total derivative :-

If  $f: D \subseteq \mathbb{R} \to \mathbb{R}$ . Let  $a \in D$ . If f'(a) = exists and let E(a,h) denote the difference

 $E(a,h) = \frac{f(a+h) - f(a)}{h} - f(a) \quad \text{if } h \neq 0 - 0$ 

We define E(a, o) = 0. From () we obtain the formula

f(a+h) = f(a) + hf'(a) + hE(a,h).

an equation which holds also for h=0. This is the first-order Taylor formula for approximating f(a+h) - f(a) by f(a)h. The Error committed is hE(a,h). From 0 we see that  $E(a,h) \rightarrow 0$  as  $h \rightarrow 0$ .

Let  $f:SSR^{h} \rightarrow R$  be a scalar field fine defined on a set  $SinR^{h}$ . Let a be an interior point of S and let B(a;r) be an n-ball lying in S. Let v be a vector with  $\|v\| < r$ , so that  $a + v \in B(a;r)$ 

1.

# Functions of two variables

DEFINITION (Differentiable Scalar field): Let  $f: S \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$ . Then, we say that f is differentiable at  $\alpha = (\alpha_1, \dots, \alpha_n)$  if there exists a linear transformation  $Ta : \mathbb{R}^n \longrightarrow \mathbb{R}$ If from  $\mathbb{R}^n$  to  $\mathbb{R}$ , and a scalar function  $E(\alpha, \nu)$  such that  $f(\alpha + \nu) = f(\alpha) + Ta(\nu) + ||\nu|| E(\alpha, \nu) \longrightarrow (2)$ for  $||\nu|| < 2$ . Where  $E(\alpha, \nu) \longrightarrow o as ||\nu|| \longrightarrow 0$ . The linear transformation Ta is called the total derivative of f at  $\alpha$ .

THEOREM: Assume f is differentiable at a with total derivative Ta. Then the derivative f'(a; y) exists for every yere<sup>n</sup> and we have

$$T_{a}(y) = f'(a; y) \qquad (1)$$

Moreover, f'(a;y) is a <u>scalar</u> <u>combination</u> of the components of y. In fact, if  $y = (y_1, \dots, y_n)$  we have

$$f'(\alpha; y) = \sum_{k=1}^{n} D_k f(\alpha) \cdot y_k \cdot - \mathbb{C}$$

Proof:->  
Equation (1) holds if 
$$y = 0$$
.  
since  $T_{a}(0) = 0$  and  $f'(a; 0) = 0$ .  
F. We can assume that  $y \neq 0$ .  
 $f = 1$  is differentiable at a we have a  
Taylor formula:  
 $f(a+v) = f(a) + T_{a}(v) + ||v|| E(a, v) \longrightarrow (2)$   
for  $||v|| < 2$ , for some  $2 > 0$ .  
Where  $E(a, v) \rightarrow 0$  as  $||v|| \rightarrow 0$ .  
F Taking  $v = hy$ , where  $h \neq 0$  p  $|h|||v|| < 2$ .  
Then  $||v|| < 2$ .  
Then  $||v|| < 2$ .  
Then  $||v|| < 2$ .  
 $Ta is linear we have
 $Ta(v) = Ta(hv) = hTa(v)$   
 $\therefore$  Equation (3) becomes  
 $\frac{f(a+hy) - f(a)}{h} = Ta(y) + \frac{|h||v||}{h} E(a, v) = (2)$   
 $\therefore ||v|| \rightarrow 0$  as  $h \rightarrow 0$  and since  $\frac{|h|}{h} = \pm 1$   
 $D \otimes becomes$   
 $\therefore \lim_{h \to 0} \frac{f(a+hy) - f(a)}{h} = Ta(y)$   
 $\Rightarrow f(a; y) = Ta(y)$$ 

$$Ta is linear And if  $y = (y_{1}, \dots, y_{M})$   
We have  $y = \sum_{k=1}^{n} y_{k}e_{k}$   

$$Ta(y) = Ta(\sum_{k=1}^{n} y_{k}e_{k})$$
  

$$= \sum_{k=1}^{n} y_{k} Ta(e_{k})$$
  

$$= \sum_{k=1}^{n} y_{k} Ta(e_{k})$$
  

$$Ta(y) = \sum_{k=1}^{n} y_{k} D_{k}f(a)$$
  
proved.  
The gradient of a scalar field :->  

$$f(a,y) = \sum_{k=1}^{n} D_{k}f(a) y_{k} = \nabla f(a) \cdot y.$$
  
Where  $\nabla f(a)$  is the vector whose  
components are the partial derivatives  
of f at a,  
 $\nabla f(a) = (D_{1}f(a), \dots, D_{n}f(a))$   
is called gradient of f.  
  
Remark:->  
 $T(a+v) = f(a) + \nabla f(a) \cdot v + Iv(E(a)v^{k}) - (*)$$$

Where  $E(q, v) \rightarrow 0$  as  $||v|| \rightarrow 0$ 

THEOREM : -> If a scalar field fis differentiable at a, then f is continuous at a. -...f is differentiable at a then, Proof:->  $f(a+v) = f(a) + \nabla f(a) \cdot v + ||v|| E(a, v) - 0$ for 111/11<92 wand E(a,12)->0 as 111/1->0.  $\left| f(a+v) - f(a) \right| = |\nabla f(a) \cdot v + ||v|| E(a,v) |$  $\leq |\nabla f(a) \cdot v| + ||v|| E(a, v)$ (By tringle inequality) B  $\leq || \nabla f(\alpha) || || \nu || + || \nu || |E(\alpha, \nu)|$ ( By cauchy-schwarz inequality)

 $f(a+v) \longrightarrow f(a) \quad as \quad ||v|| \longrightarrow 0$ 

.: f is continuous at a.

### Functions of two variables

Sufficient condition for differentiability: If  $f:S\subseteq\mathbb{R}^n \longrightarrow \mathbb{R}$  is differentiable at  $a\in S$ , then all partial derivatives  $D_if(a)_{g} \dots \dots , D_nf(a)$  exist.  $A^n$  But not conversely.

Example Let  $f: S \subseteq \mathbb{R}^2 \to \mathbb{R}$  defined by  $f(x,y) = \frac{xy^2}{x^2+y^4}$  if  $x \neq 0$ , f(0,y) = 0

For this function, & both partial derivatives Dif(9) and D2f(0) exists but f is not continuous at 0, hence f is not differentiable at 0.

THEOREM: -> (A sufficient condition for differentiability)

Assume that the partial derivatives Dif, ...., Drf exists in some n-ball B(a) and are <u>continuous</u> at a. Then <u>f</u> is differentiable at a.

Proof: 
$$\rightarrow$$
  
We have to show that  
 $f(a+v) - f(a) = \nabla f(a) \cdot v + \|v\| \in (a, v).$   
Where  $E(a, v) \rightarrow 0$  as  $\|v\| \rightarrow 0.$   
(Where the only candidate for  $Ta(v)$  is  $\nabla f(a) \cdot v$ )

Let >= 11211. 8

Then  $v = \lambda u$ , where ||u|| = 1.

We can choose & small enough so that

a+ve EB(a) in which Dif, ----, Dnf exists,

: " U= 4ey + . - - - + Unen

Where ey, ...., en are the onit-coordinate vectors.

$$f(a+v) - f(a) = f(a+\lambda u) - f(a) = \sum_{k=1}^{n} \{f(a+\lambda v_k) - f(a+\lambda v_{k-1})\}, \quad (1)$$

Where  $v_0, v_1, \dots, v_n$  are <u>vectors</u> any vectors in  $\mathbb{R}^n$  s.t.  $v_0 = 0$  and  $v_n = u$ . We choose these vectors so they satisfy the recurrence relation  $v_k = v_{k-1} + u_k e_k$ . That is, we take

$$V_0 = 0$$
,  $V_1 = u_1 e_1$ ,  $V_2 = u_1 e_1 + u_2 e_2$ ,

----, Vn = uer + - - - - + unen.

: Forom equation (1),  $f(a+b) - f(a) = \sum_{k=1}^{n} \{f(a+\lambda)v_{k-1} + \lambda e_k u_k e_k\}$ 

$$= \sum_{k=1}^{n} \{f(b_{k} + \lambda u_{k}e_{k}) - f(b_{k})\} - \frac{1}{2} \{b_{k}\} = \frac{1}{2} \{f(b_{k} + \lambda u_{k}e_{k}) - f(b_{k})\} =$$

. 2

i bk and bkt rukek differ only in  
their kth component.  
By Mean value theorem, we have  

$$f(bk + \pi ukek) - f(bk) = \pi uk Dk f(ck)$$
  
Where  $ck$  lies on the line segment  
joining bk and  $bk + \pi ukek$ .  
When  $\pi \rightarrow 0$  then  $bk \rightarrow a \Rightarrow ck \rightarrow a$ .  
putting these value in  $\mathfrak{D}$   
 $f(a+k) - f(a) = \sum_{k=1}^{n} \pi u_k Dk f(ck)$   
 $k=1$ 

•  $\nabla f(a) = \lambda \nabla f(a) \cdot u = \lambda \sum_{k=1}^{n} D_k f(c_k) u_k$ . so

$$f(a+iv) - f(a) = - \nabla f(a) \cdot v^{2}$$

$$= \Im \sum_{k=1}^{\infty} [D_{k} f(c_{k}) + c_{k} - D_{k} f(c_{k})]^{2} + v^{2}$$

$$= \Pi [v^{2}] E(a, v^{2})$$

Where 
$$E(q, v) = \sum_{k=1}^{n} \int D_k f(q_k) - D_k f(q) \int u_k$$

Each partial derivatives Duf is continuous at a, we get  $E(a,v) \rightarrow 0$  as  $\forall ||v|| \rightarrow 0$ . . f is differentiable at a. poved.

EXO Find the gradient vector at each point at which its exists for the Scalar field  $f(x,y,z) = x^2 - y^2 + 2z^2$ 

Solution:  $\therefore$  grad  $f = \nabla f \textcircled{G}$  $= \left( \frac{\partial}{\partial \chi} \widehat{i} + \frac{\partial}{\partial y} \widehat{j} + \frac{\partial}{\partial z} \widehat{k} \right) f(\Xi, T, Z)$ 

 $= 2\pi\hat{i} - 2\hat{j}\hat{j} + 4\pi\hat{k}$ 

Answer.

Derivative in a of vector field

29.

Let  $f:S\subseteq\mathbb{R}^n \longrightarrow \mathbb{R}^m$  be a vector field defined on a subset S of  $\mathbb{R}^n$ . If a is an interior point point of S and if y be any vector of  $\mathbb{R}^n$  then we define the derivative f(a;y) by

$$f'(a;y) = \lim_{h \to 0} \frac{f(a+hy) - f(a)}{h} = 0$$

Whenever the limit exists. The derivative f'(a;y) is a vector in IR.

$$f'(a;y) = (f'_i(a;y), \dots, f'_m(a;y))$$
$$= \sum_{k=1}^m f'_k(a;y) e_k - \mathfrak{C}$$

DEFINITION: → Let f:SGR<sup>h</sup> → R<sup>m</sup> be a vector field. Then f is said to be differentiable at an interior a point a if @ a ] a linear transformation

 $T_a: \mathbb{R}^n \longrightarrow \mathbb{R}^m \quad s.t.$   $f(a+\nu) = f(a) + T_a(\nu) + ||\nu|| E(a,\nu)$ 

Where  $E(a, v) \rightarrow 0$  as  $v \rightarrow 0$ .

The linear transformation is called Ta is called total derivative of f at a.

IHEOREM: → Let 
$$f:SSR^n \rightarrow R^n$$
. If fits  
differentiable at a with total derivative  
Ta. Then the derivative  $f(a;y)$  exists  
for every agin  $R^n$ , and we have  
Ta(y) =  $f'(a;y)$  — O  
Moreover; if  $f = (f_1, ..., f_m)$  and if  
 $y = (y_1, ..., y_n)$ , we have  
Ta(y) =  $\sum_{k=1}^m \nabla f_k(a) \cdot y e_k$   
 $= (\nabla f_1(a) \cdot y, ..., \nabla f_m(a) \cdot y) - 0$   
Proof:  
Le argue in the scalar case.  
If  $y = 0$ , then  $f(a;y) = 0$  and Ta(0) = 0.  
Taking  $V = hy$   
 $\therefore$  ble assume that  $y \neq 0$ .  
Taking  $V = hy$   
 $\therefore$   $f(a+hy) = -f(a) = Ta(hy) + 1hy11 E (a, V)$   
 $= h Ta(y) + 1h|11y11 E (a, V)$   
 $\Rightarrow f'(a;y) = Ta(y)$   
proved (0)

Scanned with CamScanner

-l

4

P

To prove (1) we simply note that  

$$f'(a;y) = \sum_{k=1}^{n} f'_k(a;y) e_k$$
  
 $= \sum_{k=1}^{m} \nabla f_k(a) \cdot y e_k$   
proved

Remark: 
$$\rightarrow$$
  
Equation (2) can also written as  
Ta(Y) = Df(a)Y,

Where Df(a) is mxn matrix whose kth row is  $\nabla f_k(a)$ , and y regard as is regarded as an nx1 reaction column matrix. The matrix is called the Jacobian matrix of f at a.

The total derivative Ta is also written as f'(a). The derivative f'(a) is a linear transfor -mation; The Jacobian Df(a) is a matrix representation for this transformation.

